The Coelacanth May Live for a Century. That’s Not Great News

African coelacanths are very old. Fossil evidence dates their genesis to around 400 million years ago, and scientists thought they were extinct until 1938, when museum curator Marjorie Courtenay-Latimer noticed a live one in a fisher’s net.

Found off the southeastern coast of Africa, coelacanths also live a long time—scientists have suspected about 50 years. But proving that lifespan has been tough. (Coelacanths are endangered and accustomed to deep waters, so scientists can’t just stick their babies in a tank and start a timer.) Now a French research team examining their scales with polarized light has determined that they can likely live much, much longer. “We were taken aback,” says Bruno Ernande, a marine ecologist who led the study. The new estimated lifespan, he says, “was almost a century.”

His team from the French Institute for the Exploitation of the Sea, or IFREMER, found not only that individuals can live to nearly 100 but also that they have gestation periods of at least five years, and may not mature sexually until they’re at least 40. The results were published on Thursday in Current Biology. This slow-motion life highlights the importance of conservation efforts for this rare species, which is marked as “critically endangered” on the IUCN Red List. Only about 1,000 exist in the wild, and their long gestation and late maturity are bad news for their population’s resilience to run-ins with humans. “It’s even more endangered than we previously thought,” Ernande says.

try this out
visit the website
you could look here
content
go to this site
website link
read this
official statement
reference
check out the post right here
additional info
my link
additional reading
important source
you can check here
this link
see post
next
click reference
visit site
look here
try this web-site
Going Here
click to read
check this site out
go to website
you can look here
read more
more
explanation
use this link
a knockout post
best site
blog here
her explanation
discover this info here
he has a good point
check my source
straight from the source
anonymous
go to my blog
hop over to these guys
find here
article
click to investigate
look at here now
here are the findings
view
click to find out more
important site
click here to investigate
browse around this site
click for more
why not try here
important link
address
hop over to this web-site
my website
browse around here
Recommended Site
Your Domain Name
Web Site
click this site
hop over to this site
i was reading this
click here to read
read here
i loved this
my blog
click now
you can try these out
informative post
top article
useful site
click this over here now
moved here
resource
about his
navigate to this site
click this

“It will have enormous consequences,” agrees Daniel Pauly, an ichthyologist from the University of British Columbia, who was not involved in the study. Pauly is the creator of FishBase, a database of biological and ecological information about tens of thousands of species. If a fish takes decades to spawn, then killing it wipes out its potential to replenish the population. “A fish that needs 50 years to reach maturity, as opposed to 10 years, is five times more likely to be in trouble,” he says.

Coelacanths have thick scales that grow up to two inches long, and for decades ichthyologists have been debating how to read those scales for signs of age. In the 1970s, researchers noticed small calcified structures on them. They figured the rings were age markers, like tree rings. They disagreed, however, on how to count them: Some figured that each marking denoted one year; others believed that seasonal flips created two rings per year. At the time, the best guess placed their life expectancy at about 22 years. That conclusion, which meant that a 6-foot, 200-pound coelacanth is 17 years old, implied that they grow very quickly: “They would grow as fast as tuna, which is crazy,” Pauly says.

It’s crazy because these are animals with slow metabolisms, which should indicate slow growth. Coelacanths’ hemoglobin is adapted to that slow metabolism, which means they can’t take in enough oxygen to support a fast-growing fish. Some argue that their small gills are further evidence of oxygen limitations. They also live very passive lifestyles, resting most of the day in caves and lumbering slowly through the ocean’s twilight zone, down at 650 feet and below, when they do deign to move around. “Overwhelmingly, the biological features were pointing to a slow-living fish,” says Ernande.

Leave a Reply

Your email address will not be published. Required fields are marked *