A New Study About Color Tries to Decode ‘The Brain’s Pantone’

Bevil Conway, an artist and neuroscience researcher at the National Institutes of Health, is crazy about color. He particularly loves watercolors made by the company Holbein. “They have really nice purples that you can’t get in other paints,” he says. If Conway is after a specific shade—perhaps the dark, almost-brown color the company has labeled “Mars Violet” or the more merlot-tinted “Quinacridone Violet”—he might scroll through a Holbein chart that organizes the colors by similarity. Anyone who has considered painting a wall is familiar with these arrays: lines of color that transition from bright yellows into greens, blues, purples, and browns.

one-time offer
online
original site
other
our site
our website
over at this website
over here
page
pop over here
pop over to these guys
pop over to this site
pop over to this web-site
pop over to this website
prev
previous
published here
read
read full article
read full report
read here
read more
read more here
read moreÂ…
read review
read the article
read the full info here
read this
read this article
read this post here
read what he said
recommended reading
recommended site
recommended you read
redirected here
reference
related site
resource
resources
review
right here
secret info
see
see here
see here now
see it here
see page
see post
see this
see this here
see this page
see this site
see this website
sell
she said
site
site web
sites
sneak a peek at these guys
sneak a peek at this site
sneak a peek at this web-site
sneak a peek at this web-site.
sneak a peek at this website
sneak a peek here
source
[source]
sources tell me
speaking of
special info
straight from the source
such a good point
super fast reply
take a look at the site here
talking to
talks about it
that guy
the
the advantage
the full details
the full report

But if Conway decides to shop around at another paint company like Pantone, that chart, also known as a “color space,” will be organized differently. And if he chooses to consult the Commission Internationale de l’Éclarage, an organization that researches and standardizes measurements of light and color, he will find yet another unique map. Conway is baffled by the choices. “Why are there so many different color spaces?” he asks. “If this is really reflective of something fundamental about how we see and perceive, then shouldn’t there be one color space?”

How humans perceive color, and how all those shades are related, is a question scientists and philosophers have been attempting to answer for millennia. The ancient Greeks, who famously had no word for the color blue, argued over whether colors were composed of red, black, white, and light (that was Plato’s theory), or whether color was celestial light sent down from the heavens by the gods and that each color was a mixture of white and black or lightness and darkness (that was Aristotle’s). Isaac Newton’s experiments with prisms identified the components of the rainbow and led him to theorize that the three primary colors, from which all other colors are made, are red, yellow, and blue.

Today, our scientific understanding of color perception is rooted in biology. Each color represents a specific part of the electromagnetic spectrum, though humans can only see the slice of this spectrum known as “visible light.” Of the wavelengths visible to humans, red ones are longer, while blues and violets are shorter. Photons of light stimulate photoreceptors in the eye, which transform that information into electrical signals that are sent to the retina, which processes those signals and sends them along to the brain’s visual cortex. But the mechanics of how the eye and nervous system interact with those light waves, and how a person subjectively perceives color, are two very different things.

“One way to think about neuroscience is that it’s a study of signal transformations,” writes Soumya Chatterjee, a senior scientist at the Allen Institute for Brain Science who studies the neurology of color perception, in an email to WIRED. He says that once the photoreceptors in the retina have passed information to the visual cortex, the information continues to be transformed—and scientists don’t yet understand how those series of transformations give rise to perception, or the experience an individual person has of color.

Leave a Reply

Your email address will not be published. Required fields are marked *